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Abstract 

Bacteriophages are prokaryotic viruses, which multiply in bacteria and archaea. These viruses 

are important in transferring mobile genetic elements such as virulence and antimicrobial 

resistance genes to bacteria under a process called transduction. Although bacteriophages 

have long been addressed with their various medical applications, an exciting application of 

these viruses is linked to their infection treatment potential. Since antimicrobial resistance is 

rapidly extending in bacterial populations and no novel antibiotics have been introduced to 

the market in decades, alternative treatment protocols such as phage therapy must be further 

supported to secure the future of infection treatments. The present review molecularly 

introduces bacteriophages and their major applications. 
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Introduction* 

 

Background 

owever viruses are not biologically 

categorized as living cells, they are 

enlisted in literatures as microbes. One 

of these non-living microbes, bacteriophages, 

play great roles in bacterial pathogenicity and 

coevolution. Practically, they can be used for 

the development of novel DNA and protein 

vaccines, discovery of new antibiotics and 

antiviral drugs, introduction of modern gene 

and phage therapies, and studies of bioreme-

diations (1, 2). Apparently, phage therapy is 

the most interestingly futuristic application of 

the bacteriophages since the bacterial antimi-

crobial resistance is a major complexity in 

infection treatment and possibly becoming a 

catastrophic issue in future. This review 

explains some of the major current and future 

applications of the bacteriophages after a brief 

introduction on the phage ecology.  

 

Ecology 
 

Although some may like to use “physio-

pathology” for the bacteriophage life and 

activities, “ecology” seems a further 

appropriate descriptive word for their life cycle 

as bacteriophages and viruses, in general, do 

not have any live metabolism or physiology 

(that is why viruses are categorized in none of 

the two main domains of life). However, like 

other viruses, bacteriophages include a 

precisely intelligent life strategy to multiply in 

bacteria. Bacteriophages infect bacterial hosts 

by a process called transduction. Transduction 

can be a part of the viral life cycle in bacteria. 

Bacteriophages life cycle includes infection of 

bacteria and multiply in them in five major 

steps: 1) Binding or attachment (commonly 
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adsorption in viruses) of the bacteriophage to a 

bacterial specific receptor such as surface 

protein, carbohydrate or lipopolysaccharide 

molecule; 2) Injection of the bacteriophage 

genome into the bacterial cell (rather cell 

penetration in eukaryotic viruses); 3) Synthesis 

of the bacteriophage genome and proteins 

using bacterial replication machinery; often as 

fast as half an hour for lytic bacteriophages. 

For the lysogenic bacteriophages, genome is 

inserted in the host genome without 

multiplication); 4) Assembly of the bacterio-

phages; and 5) Release of the bacterio-phages; 

mostly by lysis or extrusion but in a few cases 

by budding (3). The bacterial phage receptors 

can be located in the outer membrane of Gram-

negative bacteria, in the cell wall of Gram-

positive bacteria, in the capsular or slime layer, 

and in association with flagella or pili (4).  

Bacteria can resist bacteriophage infections by 

blocking each of above steps (5). This pressure 

has resulted in an “evolutionary arms race” (in 

some extend resembling “Red Queen hypo-

thesis”) between the bacterio-phages and their 

host bacteria through the time; in which, 

adaptive variations and selections occur in the 

host as well as its parasites (6).  

Furthermore, some bacterial genera resist 

bacteriophage infections using clustered, 

regularly interspaced, short palindromic 

repeats (CRISPR) within their genomes, which 

contain sequences similar to those of bacterio-

phages (7). The CRISPR/Cas system acts as a 

prokaryotic immune system against foreign 

genetic elements such as bacteriophages and 

plasmids and is seen in nearly 40% of bacterial 

and 90% of archaeal tested genomes (8).  

Further bacterial resistance mechanism against 

bacteriophages includes restriction-modifica-

tion (RM) system seen in  nearly 90% of 

prokaryotic genomes; by which, restriction 

enzymes cleave foreign DNA and modification 

enzymes protect host DNA from changes by 

predators (9).  

Several other antiviral resistance mechanisms 

have been described in bacteria such as 

abortive (Abi) mediated resistance (mostly in 

gamma-proteobacteria and Firmicutes) which 

results in the death (suicide) of host cells (10). 

Generally, transduction is one of the most 
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widespread forms of indirect horizontal/lateral 

gene transfer (HGT/LGT) and is reported as a 

significant mechanism in microbial ecology 

(11, 12). 

 Sometimes, bacteriophage transduction results 

in the transfer of multiple-resistance R 

plasmids between Gram-positive bacteria (e.g. 

Staphylococcus. aureus and S. pyogenes); 

however, cellular conjugation is recognized as 

the major route of transferring mobile genetic 

elements (MGEs) within bacteria (13). 

Transduction has been studied broadly in 

Gram-positive bacteria such as enterococci, 

streptococci, staphylococci, Listeria spp., 

Bacillus spp. and Lactobacillus spp. (14–18).  

These studies of transduction included 

different functions such as mutagenesis, packa-

ging and replicating activities of lytic and 

temperate bacterio-phages. For example, trans-

duction is supposed to be the most common 

HGT mechanism in S. aureus (15). In sum-

mary, transduction has been demonstrated to 

have a role in transfer of antimicrobial resist-

ance genes in a variety of bacteria.  

Bacteriophages are functionally categorized 

into two major groups: lysogenic and lytic 

bacteriophages (19, 20). The former group 

(alternatively called temperate or mild 

bacteriophages) infects bacteria and resides 

inside them without any disruption in the 

bacterial cell, while the latter (also known as 

virulent or killer bacteriophages) multiplies at 

the expense of bacterial life (Figure 1). Further 

bacteriophage functions in the bacterial host 

include chronic and persistent infections. In 

chronic infections, the bacteriophage progeny 

is released from the host cell by budding with 

no lysis occurs. In persistent infections (also 

known as pseudolysogeny or phage-carrier 

state), bacteriophages multiply in a part of the 

bacterial population (11). In lysogeny, in 

which the viral genome is integrated into the 

bacterial DNA and known as a “prophage”, the 

bacteriophage uses its host for replication of its 

genome and expression of some proteins (21, 

22). Prophages are found in two-thirds of all 

gammaproteobacteria and low-GC Gram-

positive bacteria mostly share in conjugative 

plasmids and related proteins (22, 23). 

Lysogenic bacteriophages can shift to a lytic 

phase (lysogenic induction) by sublethal doses 

of ultraviolet (UVC) irradiation or 

subtherapeutic concentrations of some antibio-

tics such as mitomycin C and norfloxacin (24–

27). This results in replication and production 

of progeny bacteriophages. Furthermore, other 

antimicrobials such as some animal growth-

promoting antibiotics are known to contribute 

to the HGT of antimicrobial resistance between 

bacteria by means of bacteriophages but with 

different mechanisms (27). A possible 

explanation is the release of bacteriophages 

from the dead bacteria directly into the 

intestines due to the action of the antibiotics. 

Olaquindox and carbadox are two of these 

antibiotics, which contribute to spread Shiga 

toxin-encoding bacteriophages in animal 

intestines (28). In contrast, some other 

antibiotics such as tylosin and monensin have 

an inhibitory effect on bacteriophage induction 

(27). However, bacteriophages can be 

inactivated by ultraviolet (UVB) irradiation; 

some are sensitive to chemicals such as ether 

and chloroform (29, 30). In both Gram-positive 

and Gram-negative bacterial pathogens, 

inserted bacteriophage genomes—prophages—

can encode and express virulence factors such 

as toxins (e.g. Shiga toxins of Escherichia coli, 

leukocidins, and superantigens of S. aureus and 

S. pyogenes) (31–35).  

Lysogeny can rapidly drive genetic changes 

and evolution by processes such as gene 

duplication and mutation in contrast to vertical 

gene transfer. In fact, HGT replaces a sexual 

life cycle in bacteria. The DNA transferred 

horizontally ranges in size from less than 1 kb 

to more than 100 kb (20) and can encode 

metabolic pathways, surface structures, toxins 

and mobile pathogenicity islands (22, 31, 35). 

For example, toxins of Corynebacterium 

diphtheria (diphtheria), Clostridium botulinum 

(botulism), Bordetella pertussis (pertussis or 

whooping cough), Yersinia enterocolitica 

(yersiniosis), spirochetes (spirochetosis), S. 

pyogenes (scarlet fever), S. aureus (food 

poisoning) and E. coli (Shiga toxins) are all 

bacteriophage encoded (36–39). Furthermore, 

some outer membrane proteins (OMPs) of E. 

coli and some antibiotic resistance genes (e.g. 

van genes) are encoded by genes carried by 
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bacteriophages. Examples of other proteins 

that are encoded by the genes carried by the 

bacteriophages include ADP-ribosyl trans-

ferase toxins, superantigens, LPS-modifying 

enzymes, type III effector proteins, detoxifying 

enzymes, hydrolytic enzymes and serum 

resistance proteins. Moreover, bacteriophages 

may carry metabolic genes acquired from the 

host genome; named auxiliary metabolic genes 

(AMGs) (36). Some AMGs which are not 

essential for the bacteriophage life cycle but 

help during lytic replication include those 

functioning in photosynthesis (40), the pentose 

phosphate pathway (41), phosphate acquisition 

(42, 43), nucleotide metabolism (44–47) and 

cyto-skeletal construction (48). Many prophage 

genes linked to potential virulence factors have 

been identified in bacterial pathogens, but their 

role in bacterial pathogenicity is still unknown 

(22). However, the products of these genes 

may have significant effects on the host 

bacteria, which can have its phenotype 

modified by expression of genes encoded by 

the prophage. These changes range from 

protection against further bacteriophage 

infection to increasing the virulence of a 

pathogenic host. For example, in some cases, 

regulatory proteins expressed by prophages are 

known to alter the pathogenesis of the host 

bacteria (49). However, prophages may not be 

necessary for the evolution of every pathogen. 

Moreover, acquisition of virulence genes is not 

a unique evolutionary mechanism in bacteria. 

Pathogenic bacteria also develop from 

commensal bacteria by loss of genes, which 

may accidentally occur by excision of 

temperate bacteriophages. In contrast to 

temperate bacteriophages, the mechanism of 

lytic bacteriophages is quite different. In the 

lytic phase, the bacteria are destroyed by the 

viriome as a natural consequence of 

multiplication (50, 51). Bacteriophages (usu-

ally dsDNA bacteriophages) use murein-

degrading enzymes (endolysins or lysins) and 

small hydrophobic pore-forming proteins 

(holins), which assist the endolysin, in the 

destruction of bacterial cell wall and release of 

newly synthesized bacteriophages (52, 53). 

These enzymes work synergically with each 

other and with antibiotics as well. Up to 

10−100 virions/cell can be released. The 

relationship between the activity of lytic 

bacteriophages and the decrease in number of 

enteropathogens has been studied (54). 

Lysogenic bacteriophages, however, only 

undergo the lytic phase under special usually 

stressful conditions (55, 56). 

Bacteriophages can play a role in transferring 

genes, such as those responsible for antibiotic 

resistance, via transduction (57). Gene transfer 

via transduction occurs when bacteriophages 

package host bacterial DNA rather than 

bacteriophage DNA during bacteriophage 

replication. Transduction is divided into two 

major types, generalized and specialized, based 

on the number and location of genes 

transferred (58). In generalized transduction, 

potentially any bacterial gene can be 

transferred into the recipient cell. The bacterial 

host DNA is broken down into smaller 

fragments and randomly packed into the 

replicating bacteriophage (lytic) particles (22). 

The size of packed DNA is small enough to fit 

into a bacteriophage head (20). This genome 

transfer may result in recombination.  

In specialized transduction, in contrast, only 

certain genes can be transferred from the donor 

bacteria to the recipient cell, meaning that only 

the host DNA on either side of the insertion 

site of prophage can be transferred (59, 60). 

The release of inserted prophages is controlled 

by several factors as environmental (e.g. 

radiation, humidity, temperature), nutritional 

and chemical (e.g. antibiotics) conditions (61). 

Possible recombination between the donor and 

recipient genes may occur. Lysogenic 

conversion is naturally seen in both Gram-

positive and Gram-negative bacteria (62). This 

 
Fig.  1.  Schematic of lysogeny and lysis phases (courtesy of R. 

Mazaheri Nezhad Fard) 
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process plays an important role in bacterial 

evolution as many virulence factors can be 

transferred between different bacteria (20). 

This is important because some changes in 

bacterial virulence and fitness such as 

acquisition of antimicrobial resistance can also 

occur (22). Examples of virulence genes 

transferred between Gram-positive bacteria by 

lysogenic conversion include neurotoxin genes 

in C. botulinum (63, 64), enterotoxin, 

staphylokinase and toxic shock syndrome 

toxin-1 genes in S. aureus (65–68), erythro-

genic toxin genes in S. pyogenes (69, 70) and 

diphtheria toxin genes in C. diphtheriae (71). 

Examples of virulence genes transferred 

between Gram-negative bacteria by lysogenic 

conversion include Shiga toxins, enterohemo-

lysin, serum resistance and  host cell envelope 

protein genes in  E. coli O157:H7 (72–75), O-

antigen acetylase and glucosyl transferase 

genes in Shigella flexneri (76–80), type III 

effector, superoxide dismutase, neuraminidase, 

insertion element and glucosylation genes in 

Salmonella enterica (81––85), cholera toxin, 

G-protein like and TCP pilin genes in V. 

cholera (86–88) and cytotoxin genes in 

Pseudomonas aeruginosa (89). In contrast, 

most of the antimicrobial resistance genes are 

transferred by the mechanisms other than 

transduction such as the conjugation. 

Conjugation is the major mechanism of 

acquired gene (e.g. antibiotic resistance and 

virulence) transfer in Gram-positive bacteria 

(90). This finding supports the hypothesis 

proposing the genetic exchange between low-

GC bacteria (91). It is estimated that most of 

the myoviruses which infect the different 

genera of Listeria, Staphylococcus, Bacillus 

and Enterococcus belong to broad-host-ranges, 

virulent SPO1-like bacteriophages such as 

A511 (92). Furthermore, interspecies transduc-

tion has been confirmed in Gram-negative 

bacteria as well (93). Affinity of bacterio-

phages to mammalian cells was shown in the 

late 90s (94). However, the importance of 

bacteriophages in gene transfer is under-

estimated, compared to other transfer routes 

such as transformation and conjugation.  

Contrary to this heterospecific transfer 

evidence, literature reviews commonly 

mention that most of the bacteriophages are 

highly species specific, having a strong affinity 

to a particular group of bacteria (95–99). This 

specific host range—which is used in the 

typing of bacteria such as Escherichia, 

Salmonella and Shigella—is possibly due to 

the production of specific lysing enzymes by 

the bacteriophages (52). However, these 

enzymes sometimes act more flexibly and lyse 

a broader spectrum of bacterial genera, such as 

the effect of an enterococcal bacteriophage 

lysin on other Gram-positive pathogens such as 

S. pyogenes, Group B streptococci, and S. 

aureus (100). O’Flaherty et al. (2005) cloned 

and expressed a staphylococcal lysin (LysK) in 

L. lactis (101). They found LysK had an 

antimicrobial potency against staphylococci. 

Moreover, some researchers argue that the 

bacteriophage infection mechanism is 

established on a strain-specific basis (102). For 

example, vibriophages have successfully been 

used for typing of 1000 Vibrio strains (103). 

 

Genomics 
 

Recently, comparative genomic hybridization 

(CGH) studies have shown a significant 

variation in genomes of different bacteria 

(104). A variety of MGEs such as 

bacteriophages are presumed to contribute 

greatly to this variation. Nowadays, hundreds 

of bacteriophage genomes have been 

sequenced; however, it is considerably lower 

than the number of bacterial genomes 

sequenced despite usually having a genome 

100 times larger (105). Fiers from the 

University of Ghent in Belgium was the first to 

complete sequence of a gene (1972) and the 

genome of bacteriophage MS2 (1976) (106).  

Although some identities are seen within the 

genomes of different bacteriophages of the 

same bacterial host, there is a significant 

diversity between the different bacteriophage 

clusters. The dsDNA tailed bacteriophages 

constitute a substantial proportion of bacterio-

phage population; some are completely 

sequenced (107–109). Most of these sequenced 

bacteriophages infect enteric and dairy bacteria 

as well as Mycobacterium spp., Pseudomomas 

spp., Staphylococcus spp. and marine bacteria. 
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A variety of techniques is used for preparing 

microbial genomes for sequencing in prokar-

yotes. Degenerate oligonucleotide primed 

amplification (DOP-PCR) is an example of 

these techniques used for the whole genome 

amplification (WGA) of microbial DNA. Other 

techniques include multiple displacement 

amplification (MDA), primer extension pre-

amplification (PEP), improved primer exten-

sion preamplification (iPEP) and long products 

from low DNA quantities degenerate-oligo-

nucleotide-primed PCR (LL-DOP-PCR). 

These methods, capable of generating high-

quality amplicons from the entire genome 

(110), were first described by Telenius et al. in 

1992 (111).  

The species-independent method, DOP-PCR, 

is applied for fingerprinting and genome 

mapping of microorganisms even with low 

quantity or poor quality genomic DNA 

template (112). In general, the whole genome 

amplification of genomic DNA is carried out 

using different methods such as Sanger method 

and “next generation” sequencing method. The 

Sanger method, introduced by Sanger et al. in 

1977, is the premier method for de novo whole 

genome sequencing (113). This technique 

includes synthesis of a complementary DNA 

template using natural 2-deoxynucleotides 

(dNTPs) and termination of synthesis using 

2,3-dideoxynucleotides (ddNTPs) by DNA 

polymerase (114). However, this method is 

relatively expensive and time consuming 

(113). Other methods for high-throughput 

DNA sequencing have recently been developed 

that are relatively cheaper and much faster. 

Some of these methods include sequencing by 

hybridization (SBH), nanopore sequencing and 

sequencing by synthesis (SBS) (115).    

For examples, the Illumina Solexa Genome 

Analyzer (Illumina, USA) (www.illumina 

.com), which has been introduced in early 

2000s and uses a “sequencing by synthesis” 

technology, sequences millions of short 

fragments or reads (generally 25–50 bp) in 

parallel (113). Another powerful sequencing 

machine, Roche 454 GS FLX (Roche, 

Switzerland) (www.roche.com), has been 

introduced to the market in 2005 using 

pyrosequencing technology. These techno-

logies are not only very accurate, but also do 

not require extra cost or incurring steps such as 

cloning. These novel technologies also allow 

single nucleotide polymorphisms (SNPs) 

detection, cancer genome analysis and large 

high-GC genome sequencing (116). 

 

Collection 
 

Bacteriophages can be detected, isolated, 

identified and characterized using a variety of 

phenotypic and genotypic methods. However, 

a precise identification of bacteriophages needs 

both methods. Briefly, phenotypic methods 

include plaque assay and purification methods, 

bacteriophage induction and the EM.  

Bacteriophages can be detected using “Cross 

Test” plaque assay method (117, 118). The 

method uses a bilayer agar including the 

indicator bacteria. Solid purification methods 

(sometimes up to five times of repetition) are 

mostly used to make a “pure line” of the 

bacteriophages (119). Bacteriophage induction 

is used to identify lysogenic bacteriophages 

through shifting to lytic ones using UVC 

irradiation or some antibiotics. After these 

methods used to detect and isolate the 

bacteriophages, transmission EM or scanning 

EM (SEM, TEM, CTEM, STEM) is used for 

the bacteriophage morphology studies.  

Preparation of bacteriophages for the EM study 

includes concentration, stabilization and 

heavy-metal staining (mostly positive rather 

than negative staining) (120). Genotypic 

methods include PCR, genome typing, genome 

walking, whole/complete genome sequencing 

and finger printing techniques such as 

amplified fragment length polymorphism 

(AFLP), multilocus sequence typing (MLST), 

multiple-locus variable number tandem repeat 

analysis (MLVA), pulsed-field gel electro-

phoresis (PFGE), random amplification of 

polymorphic DNA (RAPD) and restriction 

fragment length polymorphism (RFLP) (121–

124). In general, PCR of bacteriophage partial 

genes or genome may not be very helpful since 

the bacteriophage genome is relatively much 

smaller (sometimes only a few thousand bases) 

than the bacterial genome. Therefore, differen-

tiation between closely related bacteriophages 
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may not be possible. This prevents the accurate 

identification and characterization of the 

bacteriophages. Similarly, genome-typing 

methods, in which restriction endonuclease 

enzymes are used, only help to categorize 

bacteriophages in Baltimore method. Genome 

walking helps when the multi-locus ampli-

fication methods fail to produce the complete 

genome and genome gaps are needed to be 

filled. Thus, further comprehensive molecular 

methods such as sequencing are recommended. 

For the whole genome sequencing (WGS) of a 

bacteriophage, first the amplified genome is 

cloned to an appropriate competent host 

(commonly E. coli) using a plasmid vector. 

Genome amplification can be carried out by 

means of various PCR techniques such as 

DOP-PCR, Semi DOP-PCR and Long-range 

PCR. The cloned genome is amplified using 

Colony-PCR and then will be sequenced. For 

the old-fashioned Sanger sequencing method, 

amplified PCR products first are used in post 

cycle-sequencing reaction (dye terminator) 

purification. The products of the cycle 

sequencing reaction are then injected 

electrokinetically into capillaries filled with 

polymer. The negatively charged DNA 

fragments move through the polymer in the 

capillaries toward the positive electrode due to 

applying high voltage. Capillary electropho-

resis resolves DNA molecules by molecular 

weight. These separated fluorescent-labeled 

DNA fragments (dye terminated) move 

through the path of a laser beam and are 

detected by an optical detection device. The 

data collection software converts the 

fluorescence signal to digital data then records 

these data. After electrophoresis, data are 

analyzed by collection software (primary 

analysis) and downstream software (secondary 

analysis). Sequencing results are analyzed 

using Software such as DNASTAR Lasergene 

(DNASTAR, USA; www.dnastar.com) and 

CLC Workbench (QIAGEN, Germany; www. 

qiagen.com) and bioinformatics database such 

as GenBank and ExPASy. In addition to the 

mentioned technique, commercial shotgun 

sequencing methods are used to sequence the 

bacteriophage genome, especially when large 

genomes are targeted. Usually, bacterial 

artificial chromosomes (BACs) are constructed 

from the bacteriophage genome and then 

constructed genomes are passed through a 

mesh using the pressure of an air gun to 

produce millions of short sequences, namely 

reads. These short reads can be assembled 

using a closely related genome sequence 

assembly (template assembly using previously 

sequenced genomes as backbone), de novo 

(blind) assembly or a combination of the two 

methods. Contrary to top-down sequencing 

methods, in which a large source clone is 

firstly mapped by a BAC to BAC approach and 

then is broken up into smaller sub-clones, 

shotgun sequencing methods or the whole-

genome shotgun method produce random 

mixtures and sub-clones instead of a physical 

map (125). Therefore, this method is much 

faster and cheaper but assembly of random 

sequenced reads is more difficult and more 

likely to fail to produce the complete genome. 

However, whole genome shotgun approach 

using DNA library is reported as the most 

efficient method to sequence the genome of 

bacteria and DNA bacteriophages (126). 

However, shotgun-sequencing methods are 

relatively more expensive than in house 

sequencing methods. 

 

Applications 
 

Recent public interests in bacteriophages are 

briefly linked to genome and evolution 

research and infection therapy (127).  

Bacteriophages have played a long act in 

modern research. In 1952, two American 

geneticists, Alfred Hershey and Martha Chase, 

used T2 bacteriophages in their famous 

experiments so called “the Hershey-Chase 

blender experiments” to investigate whether 

DNA or protein was the genetic material of life 

(Figure 2) (128). They were awarded the Nobel 

Prize for Physiology or Medicine in 1969.  

More, bacteriophage phiX174 was the first 

organism that its genome was completely 

sequenced by Sanger et al. in 1977 (Figure 3) 

(114). Giving further examples for the role of 

bacteriophages in research, phage display, 

SEPTIC method, phage-ligand technology and 

model organisms can be listed. In phage 
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display, protein-protein, protein-peptide and 

protein-DNA interactions are studied using 

bacteriophages (in vitro selection). In this 

1985-introduced laboratory technique, a 

protein-encoding gene is inserted into a 

bacteriophage (e.g. lambda, M13, T4, T7) gene 

encoding coat protein, resulting in display of 

the interest protein on the surface of the 

bacteriophage (Figure 4) (129–131). Various 

bacteriophages, mostly filamentous ones, are 

used in phage display. Phage display is a 

favorably precise technique, which can be used 

especially in Ab-Ag interaction studies. 

Nowadays, phage display is preferably used to 

express and study proteins rather than other 

techniques such as bacterial display, yeast 

display, ribosome display and mRNA display. 

Various databases and online computational 

tools are available for the analysis of the phage 

display generated data (132). Another 

technique, the SEPTIC bacterial sensing and 

identification method, is based on the ion 

emission during the bacteriophage infection. 

This is a highly specific and rapid method for 

the bacteriophage detection and identification 

(133). In 2011, the US Food and Drug 

Administration (FDA) approved the first in 

vitro diagnostic product using cocktail bac-

teriophages with the commercial name of 

KeyPath MRSA/MSSA Blood Culture Test 

(MicroPhage, USA). This rapid test detects 

methicillin-resistant S. aureus (MRSA) as well 

as methicillin-susceptible S. aureus (MSSA) in 

blood cultures. Phage-ligand technology uses 

recombinantly expressed bacteriophage prote-

ins for various purposes such as binding of 

bacteria and their components and lysis of 

bacteria. Furthermore, bacteriophages are well 

known as model organisms in research. 

In addition to broad genetic research targets of 

bacteriophages; however, the most interesting 

area of the bacteriophage research seemingly 

belongs to medical treatments. Treatment 

potency of the bacteriophages was first sugg-

ested by the discoverer of bacteriophages, the 

famous French-Canadian scientist Felix 

d’Herelle, at the Institute Pasteur in Paris, 1919 

(134). This was followed by the first report on 

the application of bacteriophages in treatment 

of staphylococcal skin infections in 1921 by 

Richard Bruynoghe and Joseph Maisin. Later, 

Newton Larkum, an American pathologist, 

published a series of papers on bacteriophages 

and phage therapy in 1926, 1929, 1930 and 

1933; some were part of his PhD thesis in Yale 

University, USA (135–139). However, the idea 

of establishing a phage therapy center is coined 

to the Georgian physician, bacteriologist and 

 
Fig.  2.  Schematic of the Hershey-Chase blender experiment 

(courtesy of R. Mazaheri Nezhad Fard). 

 
Fig.  3.  Frederick Sanger (from National Library of 

Medicine). 

 
Fig.  4.  Schematic of the phage display (courtesy of R. 

Mazaheri Nezhad Fard). 
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bacteriophage researcher Professor George 

Eliava, who founded the Eliava Institute in 

Tbilisi in 1923 (www.eliava-institute.org). 

Moreover, the institute was developmentally 

contributed by Felix d’Herelle to establish the 

World Centre of Phage Research and Phage 

Therapy. This was later followed by the 

foundation of Institute of Immunology and 

Experimental Therapy by the Polish Academy 

of Sciences and Professor Ludwik Hirszfeld, 

famous Polish immunologist and microbio-

logist, in Wroclaw, Poland, in 1952 (www. 

iitd.pan.wroc.pl). Nowadays, other phage 

therapy centers serve patients, including Phage 

Therapy Center in Tbilisi, Georgia, owned by 

the Phage International (www.phagethera-

pycenter.com). In general, bacteriophages have 

medically been used to treat different 

infections such as dysentery, salmonellosis and 

gastroenteritis, mostly in East European 

countries (103, 140). Additionally, they are 

used to treat skin, mucosa and wound 

infections (140). Some commercially made 

pharmaceutical bacteriophage products include 

Stafal®, Staphylon®, Intestibacteriophagum 

Liquidum® Pyobacteriophagum® and Pyo-

bacteriophagum Poly-valentum® (Figure 5). 

For example, Pyobact-eriophagum Polyvalen-

tum® is claimed to effectively lyse various 

eubacterial genera, including Proteus spp., 

Streptococcus spp., Staphylococcus spp., 

Klebsiella pneumonia, P. aeruginosa and E. 

coli. In addition to successful stories from 

human medicine trials, clinical trials in 

veterinary medicine have demonstrated some 

hoping results. Examples include treatments of 

pet dogs with bacterial otitis (141).  

Nowadays, governments are becoming more 

and more interested in phage therapy and 

support related studies by funding them. This 

has been accelerated as fast developing 

antimicrobial resistance threatens public health 

and urges both public and private medical 

sections to shift to antibiotic replacements 

(142). The so-called tsunami of microbial 

resistance alerts decision makers to bank more 

money in alternative methods of treating 

infections, especially phage therapy. The 

question is that why they have not done this yet 

as the mission must had been completed years 

ago. A possible answer could be found when 

comparing the small effort expended to 

substitute antimicrobials and those expended to 

 
Fig.  5.  Pyobacteriophagum™ ampules including 

bacteriophages produced by Eliava BioPreparations in 

Eliava Institute, Tbilisi, Georgia (modified from Eliava 

Institute website). 

Table 1. Comparison of bacteriophages with antimicrobials in treatment of infections 
Bacteriophages Antimicrobials  Comments 

Mostly highly specific; 

secondary infections 

mostly rare 

Target pathogens & microflora. 

Changes in microbial balance 

may lead to secondary 

infections 

High specificity may considered as a disadvantage 

because pathogens must be identified before 

treatment. Antimicrobials may be more effective 

than phages when treatments are blind 

Multiply in infection sites Generally distributed over the 

body not necessarily concentrate 

in infection sites 

Phages may prescribed in less doses to achieve the 

optimal therapeutic effects 

No serious side effects Common side effects; e.g. 

allergies, secondary infections 

Minor side effects reported in phage therapy 

Pathogens resistant to a 

phage not necessarily 

resistant to other phages 

Multiple resistances seen often Antimicrobials select for resistant bacteria not just 

for resistant mutants due to their broader-spectrum 

activities 

Finding novel phages 

relatively rapid & cheap 

Developing novel antimicrobials 

very time & money consuming 

Phages can be selected against antimicrobial or 

phage-resistant bacteria by natural selection 

Modified from Sulakvelidze et al., 2001 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
sv

.o
rg

.ir
 o

n 
20

25
-0

5-
11

 ]
 

                             9 / 16

http://www.eliava-institute.org/
http://www.iitd.pan.wroc.pl/
http://www.iitd.pan.wroc.pl/
http://www.phagethera-pycenter.com/
http://www.phagethera-pycenter.com/
https://journal.isv.org.ir/article-1-352-en.html


Bacteriophages: Ecology and Applications 

50      Iranian Journal of Virology, Volume 12, Number 2, 2018    

replace oil-derived energy production! It 

sounds familiar, as everywhere-accessible 

resources do not seem fascinating enough to 

fuel new engines! Fortunately, limited-action 

antimicrobials have emerged decision makers 

and authorities to start new engines. For 

example, a new project on phage therapy is 

running by the Phagoburn, a European R&D 

project funded by the European Commission 

(www.phagoburn.eu). The major purpose of 

the project is assessment of phage therapy for 

the treatment of burn wounds infected with E. 

coli and P. aeruginosa. However, similar to 

most other treatment protocols, phage therapy 

includes advantages as well as undesirable 

disadvantages (Table 1). 

Some of the advantages of phage therapy 

include effectiveness against MDR bacteria, 

high specificity for target bacteria, no selective 

resistance, rapid response to resistant mutants, 

no chemical residues, uncommon side effects 

(e.g. Jarisch-Herxheimer reaction, toxic shock 

syndrome) and cheaper development costs.  

Of possible phage therapy disadvantages, the 

following issues can be concerned: public 

acceptance, treatment accessibility, phage 

neutralization, lysis-lysogeny intershift and 

possible bacterial resistance. However, the 

helpfulness of bacteriophages is not limited to 

in vivo bacterial eliminations since an interest-

ing application of bacteriophages is linked to 

their use as in vitro neutralizers of pathogenic 

bacteria. An ongoing hypothetical idea 

includes neutralizing bacterial bioweapons 

such as anthrax and botulism using bacterio-

phages. Other limited currently available ideas 

include spray of bacteriophages in horticulture 

for the prevention of plant decays and diseases 

caused by the bacteria and use of bacterio-

phages as biocides on peripheral hard surfaces 

such as surfaces in clinics and hospitals and 

surfaces of medical devices such as catheters 

as well as soft surfaces such as uniforms and 

curtains. Since 2006, FDA and US Department 

of Agriculture (USDA) have approved bacte-

riophage products such as those used in 

treatment of ready-to-eat (RTE) meat products, 

on cheese to clear L. monocytogenes and on 

almost all food products. 

Therefore, bacteriophages are given credits as 

"generally recognized as safe and effective" or 

GRASE (GRAS/GRAE or GRAS/E) by the 

admini-strator organizations (143). 

 

Conclusions 
 

In conclusion, bacteriophages provide novel 

research and treatment solutions for the current 

scientific and medical problems. Major 

examples include phage display, genetic study, 

DNA and recombinant vaccination, antimicro-

bial alternation and phage therapy. Further 

studies on the bacteriophage ecology and 

genomics are necessary to decode additional 

applications of these useful viruses. 
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